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The electrical streaming potential generated by a two-phase pressure-driven Stokes
flow in a cylindrical capillary is computed numerically. The potential difference �Φ

between the two ends of the capillary, proportional to the pressure difference �p for
single-phase flow, is modified by the presence of a suspended drop on the centreline of
the capillary. We determine the change in �Φ caused by the presence of an uncharged
insulating neutrally buoyant drop at a small electric Hartmann number, i.e. when the
perturbation to the flow field caused by electric stresses is negligible.

The drop velocity and deformation, and the consequent changes in the pressure
difference �p and streaming potential �Φ , depend upon three independent
parameters: the size a of the undeformed drop relative to the radius R of the
capillary; the viscosity ratio λ between the drop phase and the continuous phase;
and the capillary number Ca which measures the ratio of viscous to capillary forces.
We investigate how the streaming potential depends on these parameters: purely
hydrodynamic aspects of the problem are discussed by Lac & Sherwood (J. Fluid
Mech., doi:10.1017/S0022112009991212).

The potential on the capillary wall is assumed sufficiently small so that the electrical
double layer is described by the linearized Poisson–Boltzmann equation. The Debye
length characterizing the thickness of the charge cloud is taken to be small compared
with all other length scales, including the width of the gap between the drop and
the capillary wall. The electric potential satisfies Laplace’s equation, which we solve
by means of a boundary integral method. The presence of the drop increases |�Φ|
when the drop is more viscous than the surrounding fluid (λ> 1), though the change
in |�Φ| can take either sign for λ< 1. However, the difference between �Φ and
�p (suitably non-dimensionalized) is always positive. Asymptotic predictions for the
streaming potential in the case of a vanishingly small spherical droplet, and for large
drops at high capillary numbers, agree well with computations.

1. Introduction
Streaming potentials are generated when fluid flows past a charged surface.

Convection of electric charges within the charge cloud adjacent to the surface
leads to a current; if there is no external return path for the current, a potential
is established and current returns via conduction through the fluid. The phenomenon
is well understood for single-phase flows, for which there is a linear relationship

† Email address for correspondence: elac@slb.com



56 E. Lac and J. D. Sherwood

between the pressure drop that drives the flow and the electrical potential difference
generated by fluid motion. However, much less is known about streaming potentials
generated by multiphase flow (Morgan, Williams & Madden 1989; Antraygues &
Aubert 1993; Sprunt, Mercer & Djabbarah 1994; Guichet, Jouniaux & Pozzi 2003;
Revil & Cerepi 2004; Jackson 2008). Such flows are of importance in soil, in which the
pore space is filled by an air–water mixture, and in petroleum reservoirs (saturated by
oil–water–gas mixtures). Potential practical applications include the detection of water
approaching a production well (Wurmstich & Morgan 1994; Jackson, Saunders &
Addiego-Guevara 2005; Saunders, Jackson & Pain 2006, 2008) and the generation of
electrokinetic signals as seismic waves pass a gas–liquid interface.

Previous theoretical analysis of the streaming potential generated by a bubble or
drop flowing in a fluid-filled capillary has considered a closely fitting sphere (rigid
or inviscid) or a Bretherton bubble (Sherwood 2007, 2008). Here we compute the
streaming potential generated as a drop of viscosity λμ moves along the centreline of
a capillary filled by a second fluid of viscosity μ. This represents an idealized two-
phase flow in a porous medium: the geometry of a realistic porous material (e.g. rock)
is much more complex. The presence of the drop is known to modify the pressure
difference necessary to maintain a given flow rate or, equivalently, the flow rate driven
by a constant pressure difference (Olbricht 1996). We similarly expect the drop to
affect the streaming potential generated between the ends of the capillary, since both
the convective current in the electric double layer and the overall electrical resistance
of the capillary are modified by the presence of the drop. Our main objective is to
quantify the influence of a dispersed phase on the relationship between the pressure
drop and the streaming potential. For the sake of simplicity, we shall consider the case
of a perfectly insulating drop, so that electric currents are present only in the bulk of
the suspending liquid. The ζ -potential at the surface of the capillary wall is assumed
to be small and uniform, and the surface of the drop is uncharged. The charge cloud
at the wall of the capillary is assumed to be thin compared to the radius R of the
capillary and to the width h of the gap between the drop and the capillary wall.
In consequence, electric Hartmann numbers are small: the electric potential induced
by the flow generates negligibly small electrohydrodynamic flows compared to the
original pressure-driven flow. This simplifying assumption enables us to decouple
the hydrodynamics and the electrokinetics. Therefore we first solve the flow field
due to the motion of the drop in the capillary assuming creeping flow conditions
and determine a posteriori the induced streaming potential. We have discussed in
detail the hydrodynamic effects in a companion paper (Lac & Sherwood, 2009) and
concentrate here on the electrokinetic aspects.

The governing equations for the electrokinetic problem are set down in § 2. Section 3
presents our numerical method for deformable drops of arbitrary size and for spherical
drops of infinite surface tension fitting in the tube. We first present asymptotic
predictions for small drops (§ 4.1) and for long slender drops (§ 4.2) moving along the
centreline of the capillary. Numerical results for drops of arbitrary size follow in § 5.
Finally we discuss our results and possible directions for future research in § 6.

2. Governing equations
2.1. Hydrodynamics

We consider the motion of a liquid drop in a cylindrical capillary of radius R filled
with another liquid. The drop consists of an incompressible Newtonian liquid of
density ρ̄, dynamic viscosity μ̄ and volume V; its size is characterized by the radius



Streaming potential generated by a drop in a capillary 57

μ = λμ

μ�in �out

�w

� Ru∞ er

ex

Figure 1. Representation of a drop suspended in a pressure-driven flow.
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Figure 2. Schematic of the origin of a streaming current: a diffuse charge cloud forms in the
vicinity of the charged wall, and electric charges are convected by the flow.

a of the sphere of volume V = (4/3)πa3. The suspending liquid has density ρ = ρ̄

and dynamic viscosity μ and flows at constant volumetric flow rate πR2U under
the action of a pressure gradient G along the capillary. The coefficient of interfacial
tension between the two phases is denoted by γ . In the absence of the drop, the
(single-phase) flow reduces to a Poiseuille flow, with

U = −R2G0

8μ
, (2.1)

where G0 is the (uniform) pressure gradient.
The boundaries of the domain are the entrance and exit sections Sin and Sout , the

solid surface of the capillary Sw and the drop/medium interface S, as depicted in
figure 1. Note that hereafter, barred variables refer to the drop phase.

The Reynolds number Re = ρRU/μ is usually small in flow through low-
permeability materials, and we neglect inertia in the equations of fluid motion.
Far behind and ahead of the drop, the outer flow reduces to a Poiseuille flow, since
the flow perturbation generated by a point-force distribution in a Stokes flow decays
exponentially downstream and upstream (Liron & Shahar 1978). The solution of the
Stokes equations by means of boundary integrals has been discussed in detail by
Martinez & Udell (1990), Tsai & Miksis (1994) and Lac & Sherwood (2009).

2.2. Streaming potential due to a ζ -potential on the capillary wall

We assume that the capillary wall is electrically charged, with a uniform ζ -potential ζc.
Counter-ions in the suspension liquid accumulate in a thin cloud at the vicinity of the
wall, as depicted in figure 2. The charge in the cloud is equal to and opposite that on
the wall, so that the double layer (cloud + wall) is electrically neutral. The thickness
of the diffuse charge cloud is characterized by the Debye length κ−1. Assuming this
length is negligibly small compared to the other length scales of the problem, we may
use a plane approximation to describe the electric double layer.
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We consider a charged plane wall with local coordinates (ξ, η), where η measures
the distance normal from the wall (figure 2a). As the liquid moves past the wall, it
entrains the electric charges of the diffuse layer, which creates a streaming current
(per unit length in the vorticity direction)

j c =

∫ ∞

0

ρeu dη, (2.2)

where ρe denotes the excess charge density in the diffuse charge cloud adjacent to the
wall. Owing to the negligible thickness of the diffuse layer, the velocity field in the
charged region may be approximated by

u ≈ η

(
∂u
∂η

)
w

= η

(
∂uξ

∂η

)
w

eξ , (2.3)

where eξ is the unit vector in the direction ξ and uξ = u ·eξ . We assume ζc � kT /e,
where −e is the electronic charge and kT is the Boltzmann temperature, so that
the Poisson–Boltzmann equation describing the equilibrium charge cloud may be
linearized. It may then be shown (Hunter 1981) that

ρe ≈ −εκ2ζc e−κη. (2.4)

Including (2.3) and (2.4) in (2.2) yields the approximation

j c ≈ −ε ζc

(
∂uξ

∂η

)
w

eξ . (2.5)

If there is no return path for the electric current other than the pore itself, the
convective current has to be balanced by a counter-current in the bulk, driven by an
electric field E. At steady state, the electric field may be written as E = − ∇Φ , such
that

∇· E = −∇2Φ = 0, (2.6)

where Φ is the electric potential, referred to as the ‘streaming potential’.
In the case of a single-phase pressure-driven flow in a cylindrical tube with no

external return path for the electric current, the streaming electric field has to satisfy

2πR j c + πR2σ E = 0, (2.7)

where σ denotes the bulk conductivity of the fluid and where any surface conductivity
along the capillary wall has been neglected. Note that with the cylindrical coordinates
(x, r, ϕ) such that ex is aligned with the tube axis (figure 1), ex = eξ and er = − eη. The
wall shear rate 4U/R = −RG0/(2μ) is uniform, so that (2.5) yields j c = −4(εζcU/R) ex ,
and hence, by (2.7), E =E ex = 8εζcU/(σR2) ex . Alternatively, we may express the
mean velocity U as a function of the pressure gradient G0 and write

E = −ε ζc

σμ
G0, i.e.

(
σR2

εζcU

)
∂Φ

∂x
=

(
R2

μU

)
∂p

∂x
. (2.8)

If lengths are scaled by R, stresses by μU/R and electric fields by εζcU/σR2, (2.8)
shows that the dimensionless electric potential is equal to the dimensionless pressure
(to within an arbitrary constant). The ratio −σE/G0 = ε ζc/μ = K is often referred
to as the ‘coupling parameter’.

Our neglect of the surface conductivity due to the mobile charge cloud at the
capillary wall is easy to justify when e|ζc|/(kT ) � 1 (e.g. Sherwood 2007). In rock there
may also be significant surface conductivity within the Stern layer of ions adsorbed at
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the capillary wall (Revil et al. 1999). The effect of such surface conductivity has been
considered by Sherwood (2007, 2008) and may be important if the film between the
drop and capillary wall is thin. However, at the higher capillary numbers considered
here, the film of fluid around the drop is sufficiently thick so that its electrical
conductance is large, and surface conductivity can usually be neglected.

The analysis leading to the charge density (2.4) assumes point charges, with no
restriction on the ionic number densities. In practice, when ion densities are high
and Debye lengths κ−1 small, there may be insufficient space for the ions, and the
equilibrium charge cloud is poorly represented by (2.4). However, if ion densities are
high, the fluid conductivity σ is large, and streaming potentials will be small; so this
limit is of little interest. On the other hand, if ion densities are low, the double-layer
thickness κ−1 will be larger, and we need to check that κ−1 is small compared to the
liquid film thickness h.

The presence of the drop disturbs the outer flow and creates a variation of the
wall shear rate. Therefore, according to (2.5), the convective current j c is no longer
uniform along the capillary wall. Owing to charge conservation, a local variation of
the streaming current must be balanced by a charge flux into or out of the electric
double layer. This induces a normal electric field En at the wall, given by

∇s · j c = −σEn = σ
∂Φ

∂n
, where

∂Φ

∂n
≡ ∇Φ ·n, (2.9)

and n is the normal into the fluid (Brunet & Ajdari 2006). We shall assume that the
drop is perfectly insulating, implying that on its surface

∂Φ

∂n
(x) = 0, ∀x ∈ S. (2.10)

Since the flow reduces to a Poiseuille flow far away from the drop, the electric field
at the entry and exit sections is given by (2.8), which yields a boundary condition for
∂Φ/∂n on Sin and Sout.

When the capillary contains a long cylindrical insulating drop of radius Rδ, the
electric field E generated by a pressure gradient G is greater than that estimated in
(2.8) by a factor (1 − δ2)−1 and has typical magnitude

|E| =
ε|ζc|
σμ

|G|
1 − δ2

. (2.11)

This electric field, acting on the charge density ρe (2.4) produces a body force ρe E
which is small compared to the imposed pressure gradient if

He

1 − δ2
� 1, (2.12)

where

He =
(εκζc)

2

σμ
(2.13)

is an electric Hartmann number. In order to estimate the magnitude of He, we first
set σ = εkT κ2ω, where ω is an average ionic mobility, with ω ≈ 4 × 1011 m s−1N−1

for an aqueous solution of NaCl. Thus He =(eζc/kT )2εkT /(μωe2). Taking T = 300 K
and μ = 10−3 Pa s (water), we find the factor εkT /(μωe2) ≈ 0.28, and since we have
assumed e|ζc|/(kT ) � 1 we conclude that He is always small. The charge cloud is
adjacent to the rigid wall of the capillary, and the electric force acting on it perturbs
the fluid velocity by an amount O(Rκ)−1 less than predicted by the above arguments
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(Sherwood 2008). Setting 1 − δ2 ≈ 2h/R � 1, we conclude that the perturbation to
the velocity field is small if He/(κh) � 1, which always holds if (as assumed here)
κh 
 1. However, if we were to consider the effect of the electric field on a charge
cloud at the surface of the drop, away from rigid boundaries, a stronger condition
He R/h � 1 would have to be satisfied for velocity perturbations to be neglected.

Even in the absence of any charge cloud at the surface of the drop, the electric
field generated by fluid motion leads to Maxwell stresses which scale as ε |E|2
(Melcher & Taylor 1969; Saville 1997). These stresses are largest when h/R = 1−δ � 1,
i.e. when |E| as given by (2.11) is large. In this limit, the drop, of viscosity λμ,
occupies almost the entire cross-section of the capillary. The viscous stress at its
surface is approximately |GR|/2, where the pressure gradient G ≈ λG0 (see § 4.2) and
G0 = −8μU/R2 after (2.1). Hence, by (2.11), the Maxwell stresses are small compared
to viscous stresses if

ε |E|2 ∼ ε

(
εζc

σμ

λμU

hR

)2

� λμU

R
, i.e.

λPe He

κR (κh)2
� 1, (2.14)

where

Pe =
U

ωkT κ
(2.15)

is a Péclet number; Pe is typically small, since ωkT κ ≈ 1.7 m s−1 for the conditions
discussed above. Condition (2.14) is therefore usually easily satisfied, since He � 1
and κR > κh 
 1.

Capillary stresses might be either O(γ /a) or O(γ /R). However, when a >R, the
drop has to deform to fit within the capillary, so that capillary stresses are at
least γ /R = (μU/R) Ca−1, where the capillary number Ca = μU/γ measures the ratio
of viscous to interfacial stresses. Maxwell stresses are therefore small compared to
capillary stresses if

λ2 Ca Pe He

κR (κh)2
� 1. (2.16)

The capillary numbers that we shall consider are at most Ca ≈ 3. We conclude from
(2.14) and (2.16) that Maxwell stresses are always negligible.

Thus when ε|ζc|/(kT ) � 1 and as long as κh 
 1, we can assume that electric
stresses are small: the streaming potential is coupled with the hydrodynamics through
(2.9) and (2.5) but has a negligible feedback effect on the drop behaviour. As a
consequence, we may first solve the flow field described in § 2.1 and determine
the induced streaming potential in a post-processing step. Should condition (2.14) or
(2.16) fail, electrohydrodynamic phenomena would modify the flow inside and outside
the drop: the hydrodynamics and electrokinetics would then have to be be solved
simultaneously.

At the capillary wall, the shear rate is proportional to the viscous stress f w , with

μ

(
∂u
∂n

)
w

= (I − nn)· f w. (2.17)

Using (2.17), we may express the streaming current j c (2.5) in terms of the viscous
stress f w at the wall and then determine the boundary condition (2.9) for the electric
potential Φ at the capillary wall. Applying Green’s third identity to the potential Φ

and using (2.10), we may finally write, for any point x located on either boundary of
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scaled by

Lengths R
Velocities U
Stresses μU/R

Electric current densities εζcU/R2

Streaming potentials
εζcU

σR

Table 1. Summary of the scaling chosen for physical quantities of interest. Non-dimensional
quantities are denoted by an asterisk in the text.

the domain,

2π Φ(x) =

∮
∂Ω

{
r̂ ·n
r̂3

Φ( y) +
1

r̂

∂Φ

∂n

}
dS( y) +

∮
S

r̂ ·n
r̂3

Φ( y) dS( y), (2.18)

where r̂ = y−x; r̂ = |r̂ |; ∂Ω ≡ Sin ∪ Sout ∪ Sw; and n is the unit normal vector pointing
inward into the suspending liquid. The term ∂Φ/∂n is known on every boundary;
so the unknown of (2.18) is the electric potential distribution at the wall and at the
drop interface, as well as the uniform potentials Φin and Φout at the entrance and
exit sections. Since Φ is defined only to within an arbitrary constant, we set Φin = 0.
Furthermore, Φout may be removed from the list of unknowns because it is equal to
the wall potential at the exit section.

2.3. Dimensional analysis

Natural scales for lengths and velocities are the radius R of the capillary and the
mean velocity U of the imposed flow, respectively. A convenient scale for the stresses
is then the typical viscous stress μU/R. If gravity is neglected, the hydrodynamics
depend on three independent parameters (e.g. Martinez & Udell 1990):

α = a/R , λ = μ̄/μ , Ca = μU/γ, (2.19)

which respectively are the size of the drop relative to the capillary radius, the viscosity
ratio and the capillary number, which compares viscous stresses to interfacial tension.

Section 2.2 suggests that electric current densities and streaming potentials
should be scaled by εζcU/R2 and by εζcU/σR, respectively. Since we neglect
electrohydrodynamic phenomena and there is no ζ -potential on the drop surface,
the electrokinetics bring no additional parameter and depend solely on (α, λ, Ca)
after non-dimensionalization.

Unless otherwise stated, an asterisk will hereafter denote a dimensionless quantity,
according to the scaling proposed above and summarized in table 1. The non-
dimensional pressure difference required to drive the flow along the capillary is
therefore

�p∗ =
R

μU
(pin − pout) , (2.20)

and the non-dimensional streaming potential between the ends of the capillary is

�Φ∗ =
σR

εζcU
(Φin − Φout) . (2.21)
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In the absence of any drop, we see from (2.8) that the dimensionless pressure difference
and streaming potential between the ends of a capillary of length Lw are

�p∗
0 = �Φ∗

0 = 8L∗
w. (2.22)

The presence of the drop creates disturbances �pa = �p−�p0 and �Φa = �Φ −�Φ0,
both of which are independent of Lw. Consequently, the difference

�Φ∗ − �p∗ = �Φ∗
a − �p∗

a (2.23)

is also independent of L∗
w: we shall see later that this may be a useful experimental

measurement of the change in streaming potential due to the drop, over and above
that which might be expected from the change in pressure. Conversely, the apparent
coupling parameter K = σ�Φ/�p is always a function of the dimensionless capillary
length L∗

w; it can be computed from the perturbations �pa and �Φa through

μ

εζc

K =
�Φ∗

�p∗ = 1 +
�Φ∗ − �p∗

�p∗ = 1 +
�Φ∗

a − �p∗
a

8L∗
w + �p∗

a

. (2.24)

3. Numerical method
We consider axisymmetric configurations only. The surface integrals in (2.18) are

analytically calculated in the azimuthal direction ϕ, using∫ 2π

0

dϕ

r̂
= I01 ,

∫ 2π

0

r̂ ·n
r̂3

dϕ = (r̂xnx − yrnr ) I30 + xrnr I31, (3.1)

with the same notations as in (2.18), and where the integrals

Imn =

∫ 2π

0

cosn ϕ

r̂m
dϕ (3.2)

can be expressed in terms of complete elliptic integral of the first and second kinds
and estimated accurately by converging series. Consequently, surface integrals reduce
to line integrals along the profile of the different boundaries, and only these profiles
need be discretized.

The drop profile is divided into N elements defining N + 1 nodes (x0, . . . , xN ),
where the two extreme nodes lie on the axis of revolution. Between two neighbouring
nodes, the interface is interpolated with a cubic B-spline:

x(ξ, t) =

N+1∑
k=−1

x̆k(t) Bk(ξ ), (3.3)

where the Bk are piecewise cubic polynomials and x̆k are the spline coefficients
associated with x at time t . The parameter ξ runs from 0 to 1, such that ξ = 0
and ξ =1 correspond to the nodes x0 and xN , respectively. For each scalar variable,
the spline representation (3.3) requires N + 3 spline coefficients and two boundary
conditions imposed on the axis of revolution. For a variable that vanishes on the
axis owing to the axisymmetry of the problem (such as the radial component of any
vector field), we impose that the second derivative with respect to ξ should be zero
at x0 and xN . Otherwise, we require the first derivative to be zero. In particular, the
latter condition applies to the electric potential Φ at the drop tips.

The capillary wall is discretized in a similar fashion into Nw elements, with the
two extreme wall nodes x0

w and xNw
w located respectively on the entrance and exit
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sections, where boundary conditions are imposed, as discussed below. These sections
are located at a distance x = ±Lw/2 from the drop centre of mass, and the tube has a
total length Lw = O(10 R). Note that since Nw is a priori different from N , a separate
set of Nw + 3 basis functions Bw

k (ξ ) must be calculated.
At any time t , the flow has been determined numerically by a boundary integral

method, which gives the drop interfacial velocity u and the wall shear stress f w: further
details of the hydrodynamic computation are given by Lac & Sherwood (2009). To
solve the electrokinetic problem (§ 2.2), only the wall shear stress is needed, since it
determines the streaming current through (2.5) and (2.17). In the spline coefficient
space, the integral equation (2.18) yields a linear system of size (N + 3) + (Nw + 3),
which we solve using the open-source library Lapack. This system is built with
(N + 1) + (Nw − 1) equations provided by (2.18) at the nodes xj and xj

w (excluding
the two extreme wall nodes), together with five boundary conditions:

at the drop tips,
∂Φ

∂r
= 0;

for x ∈ Sw ∩ Sin, Φ = Φin = 0,
∂2Φ

∂x2
= 0;

for x ∈ Sw ∩ Sout,
∂2Φ

∂x2
= 0.

(3.4)

The missing equation is given by (2.18) for x ∈ Sin, placed on the axis for convenience.

4. Asymptotic results for small drops and long slender drops
4.1. A small drop on the centreline of the capillary

We first consider the limit of a droplet of radius a = αR � R located on the centreline
of the capillary. For such small drops, dimensionless capillary forces scale as (α Ca)−1;
i.e. the drop deformability is determined by both the dimensionless drop size and
the capillary number (unlike large drops, for which the surface curvature scales like
R−1 rather than a−1 when a � R). Therefore, a sufficiently small drop will remain
spherical, even if the capillary number is large.

For an asymptotically small spherical droplet, the pressure disturbance has been
derived by Brenner (1971):

�p∗
a =

�pa

μU/R
=

16

27

(2 + 9λ)2 − 40

(1 + λ)(2 + 3λ)
α5 + O(α10). (4.1)

The presence of the drop modifies the streaming potential in two ways: (a) the stress
at the walls of the capillary is changed, thereby changing the current of convected
ions, and (b) the electrical resistance of the fluid-filled capillary is modified. Sherwood
(2009) showed that in the absence of surface conductivity, the perturbation to the
streaming potential caused by the change in stress at the capillary wall is

�Φ∗
a =

σR

εζcU
�Φa ∼ α5. (4.2)

However, the reduction of conductance caused by the presence of the insulating drop
leads to a non-dimensional change in potential

�Φ∗
a = 16 α3, (4.3)

which is O(α−2) larger than the change in potential (4.2) due to stresses acting on
the wall in the limit α � 1. Since the additional pressure drop (4.1) decays much
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faster with α than the additional streaming potential (4.3), the difference �Φ∗
a − �p∗

a

behaves as �Φ∗
a for α � 1.

4.2. Asymptotic analysis for a long slender drop in a capillary

We consider a laminar annular flow of two liquids driven by a pressure gradient G in
a capillary of radius R. The inner liquid, of viscosity λμ, occupies a cylinder of radius
Rδ <R, and the outer liquid, of viscosity μ, occupies the annular film of thickness
h =(1 − δ)R. Continuity of the fluid velocity u and of the tangential stress across the
interface yields

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

G

4μ
(r2 − R2) ex, Rδ � r � R,

G

4λμ
{r2 + (λ − 1)δ2R2 − λR2} ex, 0 � r � Rδ.

(4.4)

The total volumetric flow rate through a tube section is

Q = 2π

∫ R

0

u·ex r dr = −πGR4

8μ
{1 + (λ−1 − 1)δ4}, (4.5)

and if we define the mean velocity U such that Q = πR2U , the pressure gradient is

G = −8μU

R2
{1 + (λ−1 − 1)δ4}−1, (4.6)

rather than G0 = −8μU/R2 in the absence of any drop. If the inner cylinder represents
a long but finite drop moving with velocity V , then

π(Rδ)2V = 2π

∫ Rδ

0

u·ex r dr =
πGR4

8μ

(
2δ4 − 2δ2 − δ4λ−1

)
, (4.7)

so that

V

U
= − GR2

8μU
{2 + (λ−1 − 2) δ2} =

2λ + (1 − 2λ) δ2

λ + (1 − λ) δ4
. (4.8)

If the drop shape is approximated by a cylinder with two hemispherical caps of radius
Rδ, the length l of the cylindrical part is given by

l

R
≈ 4

3
(α3 − δ3) δ−2. (4.9)

The change in pressure along the cylindrical part of the drop is Gl. There will be
additional pressure losses due to the end-caps, but when δ � 1 these are expected
to scale as δ5 according to (4.1) and can be neglected. The additional pressure �pa

caused by the presence of the drop is therefore essentially due to the cylindrical part
of the drop, i.e.

�p∗
a =

�pa

μU/R
≈ (G0 − G) l

μU/R
≈ −32

3

(1 − λ) δ2

λ + (1 − λ) δ4
(α3 − δ3). (4.10)

Along the length of the drop, the streaming current (2.5) generated at the capillary
wall must be balanced by conduction through the fluid annulus of area π(1 − δ2)R2.
The streaming potential gradient in the annulus is therefore

∂Φ

∂x
=

εζc

μσ

G

1 − δ2
, G ≡ ∂p

∂x
. (4.11)
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The disturbance in streaming potential due to the drop cylindrical part, after (2.8)
and (4.11), is thus

�Φ (cyl)
a ≈ εζc

σμ

(
G0 − G

1 − δ2

)
l (4.12a)

≈ 32

3

λ − (1 − λ)(1 − δ2) δ2

(1 − δ2)[ λ + (1 − λ) δ4]

εζcU

σR
(α3 − δ3), (4.12b)

and (4.12b) indicates the possibility that �Φ
∗(cyl)
a < 0 if λ< 1/5.

The presence of the end-caps causes only a small change in the hydraulic resistance
of the capillary but makes a much larger change in the electrical resistance, which, by
(4.3), may be expected to be O(δ3) when δ � 1. There is much to be said for estimating
the streaming potential due to the drop in terms of a drop length L∗ =(4/3)α3δ−2,
rather than in terms of the cylindrical length l∗ defined by (4.9). However, use of
L∗ would lead to poorer estimates for the pressure drop caused by the drop and
merely hides our ignorance of the streaming potential correction due to the end-
caps. To proceed further, we note from (4.12) that when δ � 1 the leading-order
contribution to �Φa is due to the reduced electrical conductance of the capillary
caused by the presence of the insulating drop. The cylindrical portion of the drop,
when δ � 1, contributes a change �Φ

(cyl)
a ∼ −G0 l δ2(εζc/σμ), proportional to the

volume πδ2R2 l of the cylinder. We therefore base our estimate of the contribution of
the end-caps on their volume and obtain

�Φ∗
a ≈ σR

εζcU
�Φ (cyl)

a +
32

3
δ3

≈ 32

3

λ − (1 − λ)(1 − δ2) δ2

(1 − δ2)[ λ + (1 − λ) δ4]
(α3 − δ3) +

32

3
δ3. (4.13)

As discussed in § 2.3, a natural quantity to consider is the difference between the
dimensionless changes in streaming potential and pressure, i.e.

�Φ∗
a − �p∗

a ≈ 8
G

G0

δ2

1 − δ2

l

R
+

32

3
δ3

≈ 32

3

α3 − δ3

(1 − δ2)[1 + (λ−1 − 1) δ4]
+

32

3
δ3.

⎫⎪⎪⎬
⎪⎪⎭

(4.14)

Lac & Sherwood (2009) found that when Ca 
 1 and λ � 1/2 the dimensionless
cylindrical radius δ of the drop behaves as

δ ∼ (2 − λ−1)−1/3 Ca−1/3, λ > 1/2, (4.15a)

δ ∼ Ca−1/5, λ = 1/2, (4.15b)

and the additional pressure drop (4.10) as

�p∗
a ∼ α3 (1 − λ−1)(2 − λ−1)−2/3 Ca−2/3, λ > 1/2, λ �= 1, (4.16a)

�p∗
a ∼ −α3 Ca−2/5, λ = 1/2, (4.16b)

�p∗
a ∼ Ca−5/3, λ = 1. (4.16c)

When λ= 1 the drop viscosity is equal to that of the surrounding fluid, and the long,
cylindrical portion of the drop has no effect upon the pressure drop, which is due
only to the ends of the drop. The special case λ= 1/2 is more unexpected. Drops of
viscosity λ � 1/2 always travel more slowly than the undisturbed centreline velocity
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λ> 1/2, λ �= 1 λ= 1/2 λ= 1

�p∗
a ∼ α3 (1 − λ−1)(2 − λ−1)−2/3 Ca−2/3 ∼ −α3 Ca−2/5 ∼ Ca−5/3

�Φ∗
a − 32

3
α3 ∼ α3 (2 − λ−1)1/3 Ca−2/3 ∼ α3 Ca−6/5 ∼ α3 Ca−2/3

�Φ∗
a − �p∗

a − 32
3
α3 ∼ α3 (2 − λ−1)−2/3 Ca−2/3 ∼ α3 Ca−2/5 ∼ α3 Ca−2/3

Table 2. Asymptotic behaviour of the pressure and streaming potential disturbances due to
an elongated drop of size a = αR at high Ca and for λ � 1/2.

in the capillary; i.e. the drop velocity V is lower than 2U . If λ< 1/2, V exceeds 2U at
sufficiently high Ca, and as a result the streamlines at the end of the drop take quite
a different form (Lac & Sherwood, 2009).

As δ → 0, the effect of the drop on the pressure gradient (4.6) decreases as δ4.
Consequently, even though the length of the drop increases as δ−2, the additional
pressure drop �pa decays to zero for λ � 1/2. However, the electrical resistance per
unit length of the capillary is perturbed by an amount O(δ2), which when combined
with the increasing drop length O(δ−2) leads to a finite change in total resistance
and streaming potential. We deduce from (4.13) that when λ � 1/2 the change in
streaming potential �Φ∗

a tends to the constant value (32/3) α3 depending on the drop
volume, at a rate

�Φ∗
a − 32

3
α3 ∼ 32

3
(2 − λ−1)(α3 − δ3) δ2 +

32

3
(λ−2 − 1) α3δ6 + O(δ8), (4.17a)

�Φ∗
a − 32

3
α3 ∼ α3 (2 − λ−1)1/3 Ca−2/3, λ > 1/2, (4.17b)

�Φ∗
a − 32

3
α3 ∼ α3 Ca−6/5, λ = 1/2, (4.17c)

where we note that (4.17c) relies on our choice (32/3) δ3 for the end-cap correction
in (4.13): any other choice would lead to a contribution O(Ca−3/5), far removed
from the numerical results to be presented in § 5.3. However, these numerical results
also suggest that the end-cap correction should contain additional terms of higher
order than δ3, which ultimately dominate the α3δ6 contribution corresponding to
(4.17c). The unknown contribution of the end-caps does not affect the leading-order
behaviour of the difference �Φ∗

a − �p∗
a when δ → 0, and (4.14) leads to

�Φ∗
a − �p∗

a − 32

3
α3 ∼ α3 (2 − λ−1)−2/3 Ca−2/3, λ > 1/2, (4.18a)

�Φ∗
a − �p∗

a − 32

3
α3 ∼ α3 Ca−2/5, λ = 1/2. (4.18b)

The asymptotic behaviours (4.16)–(4.18) obtained for λ � 1/2 are summarized in
table 2. For λ< 1/2 the numerical computations of Lac & Sherwood (2009) indicate
that at large capillary numbers, the cylindrical radius δ of the drop tends to a limit
that was found empirically to be

δ∞ =

√
2

5

1 − 2λ

1 − λ
, (4.19)

leading to limit values for �p∗
a and �Φ∗

a through (4.10) and (4.13).
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5. Arbitrary drop size
We now investigate numerically the effect of the parameters α, Ca and λ on

the additional pressure drop and streaming potential. The influence of the viscosity
contrast is investigated by comparing the results obtained for three values of λ.
We choose λ= 0.1 and 10 to address the cases of low- and high-viscosity drops,
respectively, and λ=1 to highlight the effect of size and capillarity, independently of
viscous effects.

5.1. Effect of drop size

The streaming potential perturbation �Φa is shown in figure 3 as a function of the
drop size a for different viscosity ratios and capillary numbers. As discussed in § 4.1,
the streaming potential disturbance is caused (a) by the change in electrical resistance
of the capillary owing to the presence of the insulating drop and (b) by the change in
the convective current due to the non-uniform shear rate created by the motion of the
viscous drop (i.e. a hydrodynamic effect). For small spherical droplets, the dominant
effect comes from the change of electrical resistance (§ 4.1). The resulting potential
perturbation is therefore independent of λ and always positive; we find a very good
agreement between our numerical results and prediction (4.3) for α = O(0.1). As the
drop size increases, an increasingly long viscous film eventually appears between the
deformed drop and the capillary wall. The wall shear rate (and hence the convective
electric current) in the film region depends upon the viscosity contrast between the
drop and the wetting phase. If λ< 1, the streaming current induced by the drop in
the film region is lower than that of the single-phase flow, leading to a decreasing
perturbation �Φa as the drop size increases, and vice versa for λ> 1. For very
large drops, this film regime is dominant, since the effect of the drop ends may be
neglected. It yields �Φ∗

a ∼ α3 (cf. (4.17)) as can be seen in figures 3(b) and 3(c). For
low-viscosity drops, the competition, at fixed capillary number, between viscous effects
(decreasing the streaming potential) and the additional resistivity effect (enhancing
the streaming potential) leads to a maximum perturbation �Φa as the drop volume
varies (figure 3a). When λ � 1, on the other hand, �Φ∗

a monotonically increases with
α (figures 3b and 3c). This suggests gas bubbles and viscous oil droplets in water-wet
rocks should generate very different streaming potential responses.

Figure 4 shows the perturbation �Φ∗
a − �p∗

a as a function of the drop size, for
different viscosity ratios. We observe that this quantity is always positive, which
enables us to display the effect of λ more clearly, since all the data can be shown
on the same logarithmic scale. The thick dashed lines in figures 3 and 4 show, for
λ= 1, 10, the slope α3 predicted by (4.17) and (4.18) for long drops when λ � 0.5. For
given (λ, Ca) any increase in the volume of the drop merely lengthens the cylindrical
portion of the drop of radius δ (which remains unchanged), as discussed by Lac &
Sherwood (2009). The α3 dependence of �Φ∗

a and �Φ∗
a − �p∗

a is therefore expected
for all Ca as long as the drop is sufficiently long for end corrections to be negligible,
as predicted by (4.13) and (4.14). Although the numerical prefactor in expression
(4.15) for δ is unknown, we know that 0 <δ < 1, and so, by (4.13) and (4.14), the
disturbances �Φ∗

a and �Φ∗
a − �p∗

a approach (32/3)α3 from above as Ca increases, as
seen in figures 3 and 4.

5.2. Spherical drops: Ca = 0

If α < 1, the drop is sufficiently small such that it can fit undeformed within the
capillary, and we can therefore investigate the case of an undeformed spherical drop
(Ca = 0), for which analytic results are available when the gap 1 − α between the
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Figure 3. Effect of drop size on �Φ∗
a for λ=0.1, 1, 10 and different capillary numbers: dotted

line, asymptotic prediction (4.3) for small spherical drops; thick dashed line in (b) and (c),
asymptote (32/3)α3 predicted by (4.17) for long drops at high Ca and λ � 1/2.
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Figure 5. Additional pressure drop and streaming potential generated by a closely fitting
spherical drop in the capillary at Ca = 0: (a) �p∗

a and (b) �Φ∗
a versus gap width h =R − a

for a range of viscosity ratios. The dashed lines denote asymptotic predictions for λ= 0 and
λ → ∞ given by (5.1) (with −36 added to the right-hand side) and (5.2) (with −16 added).

drop and the capillary is small. A somewhat different numerical scheme is required
for the hydrodynamical computation, as discussed by Lac & Sherwood (2009),
but the computation of the streaming potential is unaffected. Figure 5 shows the
additional pressure drop and streaming potential as functions of the gap width
h/R = 1 − α between the drop and the wall, for 0.9 � α < 1 and over a wide range of
viscosity ratios. In the limit h/R � 1, lubrication analysis (Hochmuth & Sutera 1970;
Bungay & Brenner 1973; Sherwood 2007) predicts the additional pressure drop:

�p∗
a = 2π

(
h

2R

)−1/2

, λ = 0 ; (5.1a)

�p∗
a = 4π

(
h

2R

)−1/2

, λ → ∞. (5.1b)

The next term in the expansion for �p∗
a is presumably a constant, and by adding

−36 to the right-hand sides of (5.1a) and (5.1b) we get good agreement with the full
numerical results for �p∗

a, as seen in figure 5(a). This added constant is comparable
to the value −31.5 proposed by Hochmuth & Sutera (1970) for the case of a rigid
sphere. The corresponding streaming potentials were studied by Sherwood (2007),
who found

�Φ∗
a = 2π

(
h

2R

)−1/2

, λ = 0 , (5.2a)

�Φ∗
a =

π

4

(
h

2R

)−3/2

, λ → ∞. (5.2b)

The next term in expansion (5.2a) is presumably a constant. We add −16 to the right-
hand sides of both (5.2a) and (5.2b), after which figure 5(b) shows good agreement
between (5.2b) and full numerical results for λ> 100. This constant −16, chosen
arbitrarily to improve the agreement with the full numerical results, corresponds to
the streaming potential across a length 2R of capillary in the absence of any spherical
particle. As λ decreases, so does the streaming potential, until no appreciable difference
is observed between λ=0.01 (not shown for clarity) and λ= 0.001. However, there is
an unresolved discrepancy between the computed �Φ∗

a and (5.2a) in the range of h/R
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Figure 6. (a) Additional streaming potential �Φ∗
a versus Ca: �, α =0.8; �, α = 1.1. (b) As for

(a) but showing how �Φ∗
a approaches the value (32/3)α3 predicted for λ � 0.5 as Ca increases:

dotted lines, ∼Ca−2/3; dashed, dot-dashed, solid lines, λ= 0.1, 1, 10, respectively.

shown in figure 5. This may in part be due to the fact that for the inviscid bubble the
streaming potential increases only as (h/R)−1/2 as h → 0. The effect of the thin film
dominates that of the rear and front caps only when h � R. Unfortunately, we have
not been able to simulate dimensionless gaps smaller than 0.002 owing to instabilities
arising in the numerical method.

5.3. Effect of the capillary number

We now investigate the effect of the capillary number at fixed drop volume and
viscosity ratio. Figure 6 shows the evolution of the additional streaming potential
�Φ∗

a under increasing flow strength. Since the drop is insulating, its presence in the
capillary increases the electrical resistance of the tube, which tends to increase the
streaming potential. On the other hand, the streaming current depends on the wall
shear rate. As a result, the actual value (and sign) of �Φ∗

a is a function of (α, λ, Ca).
When λ> 1, the streaming current is always enhanced by the motion of the drop,
and �Φ∗

a is positive for all drop volumes, for all Ca (figure 6a, λ= 10). At sufficiently
small capillary number, the enhanced electrical resistivity and capillary effects due
to the drop ends dominate viscous effects, and �Φ∗

a is positive even when λ< 1/5.
The effect of low viscosity is therefore visible only for sufficiently large drops and
capillary numbers (figure 6a, λ=0.1, α =1.1). Figure 6(b) shows how the additional
streaming potential reaches the asymptotic value (32/3)α3 predicted for a viscous
drop (λ � 0.5) at large capillary numbers (§ 4.2). Our numerical results follow the
predicted behaviour ∼Ca−2/3 for λ=10, whereas the agreement is poorer for λ=1,
for which �Φ∗

a decays faster than predicted. In this case, the absence of viscosity
contrast leaves the wall shear rate (and therefore the streaming current) equal to that
for single-phase flow. The end-caps therefore play a more important role than usual
unless the drop is exceedingly long.

Figure 7 is the counterpart of figure 6 for the difference �Φ∗
a − �p∗

a. We see that
this difference becomes smaller for λ=10 than for λ= 1 at sufficiently high Ca, as
predicted by (4.18a). However, the predicted ∼Ca−2/3 decay at high capillary numbers
is poorly captured by our numerical results. For the particular viscosity ratio λ= 1/2
(figure 8), the difference �Φ∗

a − �p∗
a at large Ca is dominated by the pressure drop,

which decays more slowly than the streaming potential as Ca increases (see table 2).
The behaviour of the streaming potential �Φ∗

a depends upon unknown corrections
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a; the dotted, dot-dashed and long dashed lines
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for the end-caps, and the prediction of (4.17c) for the rate at which �Φ∗
a approaches

(32/3)α3 seems to correspond to the numerical results for the longer of the two drops
shown in figure 8 (α = 2). However, when α = 1.1 the rate of decay of �Φ∗

a − (32/3)α3

is slower than Ca−6/5, and the line ∼Ca−1 shown in the figure corresponds to an
additional end-cap correction O(δ5) in (4.13) and in (4.17a). Such a correction would
ultimately dominate the α3Ca−6/5 prediction of (4.17c), and this would seem to have
already occurred for the smaller of the two drops. A thorough analysis of the end-cap
contribution would be required to confirm this hypothesis.

The validity of the long slender drop approximation (§ 4.2) is investigated in figures
9 and 10, which show �Φ∗

a and �Φ∗
a − �p∗

a as functions of the film thickness h, for
α = 2. For a given viscosity ratio, we find that the difference between the annular
model and the numerical results decreases as Ca increases. This is expected, since
the drop thins and elongates as Ca increases, thereby more nearly satisfying the
assumptions which lead to (4.13) and (4.14). These approximations provide estimates



Streaming potential generated by a drop in a capillary 73

10.10.01
–500

0

500

1000

1500

2000

h/R

Ca

λ = 0 λ = 0.01

λ = 0.1

λ = 0.2

λ = 0.5

λ = 1

λ = 10

λ → ∞

Δ
Φ

* a

Figure 9. Additional streaming potential �Φ∗
a versus film thickness h for very long drops

(α = 2): thin lines, long-drop approximation (4.13); �, numerical results; dotted line, limit
values (4.19) combined with (4.13) for λ< 0.5.

10.10.01

104

103

102

101

100

h/R

Ca
λ = 0

λ = 0.01

λ = 0.1

λ = 0.2

λ = 0.5

λ = 1

λ = 10 λ → ∞

Δ
Φ

* a 
–
 Δ

p* a

Figure 10. Same as figure 9 for �Φ∗
a − �p∗

a.

of the pressure drop and streaming potential disturbances either in terms of δ or
in terms of the drop velocity (easily measured experimentally), since V/U yields δ

through (4.8).
We finally show in figure 11 the effect of viscosity contrast on streaming potential

at Ca = 0.05 and for three drop sizes, α = 0.8, 1.1, 2. We first note that �Φ∗
a reaches

a plateau value at large viscosity contrasts, i.e. λ or λ−1 
 1 (figure 11a). The rate of
change of �Φ∗

a with λ is greatest in the range 0.1 � λ � 5, typically. The streaming
potential generated by small drops is reasonably well estimated by the limit Ca = 0,
corresponding to a spherical drop with infinite surface tension. Since sufficiently
small drops are virtually undeformable, the agreement improves as α decreases below
0.8 (not shown in figure 11 for clarity). We see from figure 11 that the long-drop
approximation is not valid for a drop volume corresponding to α = 1.1 at this low
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capillary number; for this drop size, the cylindrical part, if any, is extremely short,
and so the dominating disturbance comes from the end-caps, for which we have but
a poor estimate – the term (32/3)δ3 in (4.13) and (4.14). For Ca = 0.05 and α =2,
we see that the long-drop approximation of �Φ∗

a and �Φ∗
a − �p∗

a is indeed much
better than when α = 1.1. For long, high-viscosity drops, viscous effects (affecting
streaming currents) and global electrical resistance increase linearly with the drop
volume; hence increasing the relative drop size α rapidly increases both �Φ∗

a and
�Φ∗

a − �p∗
a. This effect is weaker at low viscosity ratios because hydrodynamic and

additional resistance effects compete (figure 11b).

6. Conclusion
The main purpose of this paper was to predict streaming potentials in capillary

flow, in the presence of a drop of arbitrary size and viscosity, and thereby extend
the results of Sherwood (2007), who considered only rigid or inviscid drops that
fitted tightly in the capillary. The purely hydrodynamic results, of interest to a larger
community than that involved in electrokinetic problems, have been presented in a
separate paper (Lac & Sherwood, 2009). However, many of the results obtained here
for the change in streaming potential �Φ∗

a caused by the presence of the drop are
closely related to equivalent results for the change in the pressure drop �p∗

a caused
by the drop.

The sign of �Φ∗
a depends upon the drop viscosity, but unlike �p∗

a the change in
the sign of �Φ∗

a does not occur at λ= 1. The presence of the non-conducting drop
reduces the average conductivity of the capillary and tends to increase the streaming
potential. However, when λ< 1 the reduced pressure gradient caused by the presence
of the low-viscosity drop reduces the streaming current and hence tends to reduce
the streaming potential. Competition between these two effects determines the sign of
�Φ∗

a . A reduced streaming potential (�Φ∗
a < 0) is possible for a long drop if λ< 1/5

(cf. (4.12)), though we have shown in § 4.1 that the dimensionless streaming potential
is always enhanced if the drop is sufficiently small (e.g. figure 3a).

Single-phase flow experiments typically determine the coupling coefficient of
proportionality between applied pressure and measured streaming potential. The
introduction of a second fluid phase usually modifies the pressure gradient required
to achieve any particular flow rate, and the change in streaming potential over and
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above that which might be expected solely on the basis of the change in pressure is
�Φ∗

a − �p∗
a. The computational results of § 5 become much more consistent when

expressed as the difference �Φ∗
a − �p∗

a (which is always positive).
The hydrodynamic behaviour of the drop at large Ca, discussed by Lac & Sherwood

(2009), directly affects the streaming potential. If λ< 1/2 the drop does not elongate
indefinitely but tends towards a limiting cylindrical diameter before breaking. It is
therefore natural that �Φ∗

a tends to a limit. More unexpected is the behaviour for
λ � 1/2, when the drop elongates indefinitely as Ca increases. As the interface of
the drop approaches the centreline of the capillary, the change in shear rate at the
capillary wall is reduced, and the main effect of the drop is to change the conductivity
of the capillary. However, as the drop lengthens, its cross-section is reduced: the
total change in electrical resistance, which depends on the drop volume, is unaltered.
The net effect is a limiting value (32/3)α3 for �Φ∗

a , whereas the pressure disturbance
vanishes.

The results presented here remain to be tested by experiment. The narrow gap
between the drop and the capillary wall plays an important role, particularly at low
Ca, and Sherwood (2008) has given estimates for the streaming potentials that might
have to be measured in experiments at low Ca. At the higher flow rates discussed
here, the streaming potentials would be larger and so more easily measured, but the
percentage change in streaming potential caused by the presence of the elongated drop
would be reduced (see e.g. figure 7). In other geometries (e.g. non-circular channels)
the effect of Ca is likely to be reduced, since the continuous, wetting fluid always
occupies the channel corners and the electrical conductance does not drop to zero as
Ca → 0.

Several simplifying assumptions have been made in order to make the problem
considered here more tractable. For example, surface charge at the surface of the
drop has been neglected: our understanding of charge at liquid–liquid interfaces is
more limited than at a solid interface. If the surface charge is due to adsorbed
surfactants, a full computation would require knowledge of the adsorption isotherm,
of the proportion of surfactants that are charged and of Marangoni effects caused
by changes in interfacial tension (Baygents & Saville 1991). Such details are beyond
the scope of the current study. Our assumption that the drop is non-conducting is
probably appropriate for an oil droplet in water but not for water in oil. Debye
lengths κ−1 are typically of the order of nanometres in water; so our assumption
that κ−1 � h and charge clouds are thin is reasonable in water at all but the
lowest capillary numbers. However, the ionic number density is much lower in very
low-conductivity oils than in water, and Debye lengths would be much larger. Zeta-
potentials at a solid surface are typically in the range 0–100 mV, which correspond to a
non-dimensional potential 0 � |eζc/kT | < 4. Linearization of the Poisson–Boltzmann
equation governing the equilibrium electric charge cloud requires |eζc/kT | � 1, and
there is scope for work to extend the results presented here to higher potentials.
In particular, at high potentials electric Hartmann numbers may not be small, and
the fluid velocity may be modified by the electric field. Under such circumstances it
will no longer be possible to decouple the hydrodynamic part of the computation
from the computation of the electric field. This decoupling was used when obtaining
the results presented here and was an important simplification of the computational
scheme.

Finally, we point out that the flow geometry in porous rock rarely consists of
straight capillaries, and there is much to be done in more realistic geometries. In
future work we hope to remove some of the simplifying assumptions listed above.
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